309 research outputs found

    Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes

    Get PDF
    The application of emerging technologies of Internet of Things (IoT) and cloud computing have increasing the popularity of smart homes, along with which, large volumes of heterogeneous data have been generating by home entities. The representation, management and application of the continuously increasing amounts of heterogeneous data in the smart home data space have been critical challenges to the further development of smart home industry. To this end, a scheme for ontology-based data semantic management and application is proposed in this paper. Based on a smart home system model abstracted from the perspective of implementing users’ household operations, a general domain ontology model is designed by defining the correlative concepts, and a logical data semantic fusion model is designed accordingly. Subsequently, to achieve high-efficiency ontology data query and update in the implementation of the data semantic fusion model, a relational-database-based ontology data decomposition storage method is developed by thoroughly investigating existing storage modes, and the performance is demonstrated using a group of elaborated ontology data query and update operations. Comprehensively utilizing the stated achievements, ontology-based semantic reasoning with a specially designed semantic matching rule is studied as well in this work in an attempt to provide accurate and personalized home services, and the efficiency is demonstrated through experiments conducted on the developed testing system for user behavior reasoning

    Energy Cooperation in Battery-Free Wireless Communications with Radio Frequency Energy Harvesting

    Get PDF
    Radio frequency (RF) energy harvesting techniques are becoming a potential method to power battery-free wireless networks. In RF energy harvesting communications, energy cooperation enables shaping and optimization of the energy arrivals at the energy-receiving node to improve the overall system performance. In this paper, we proposed an energy cooperation scheme that enables energy cooperation in battery-free wireless networks with RF harvesting. We first study the battery-free wireless network with RF energy harvesting then state the problem that optimizing the system performance with limited harvesting energy through new energy cooperation protocol. Finally, from the extensive simulation results, our energy cooperation protocol performs better than the original battery-free wireless network solution.特

    HVSTO: Efficient Privacy Preserving Hybrid Storage in Cloud Data Center

    Full text link
    In cloud data center, shared storage with good management is a main structure used for the storage of virtual machines (VM). In this paper, we proposed Hybrid VM storage (HVSTO), a privacy preserving shared storage system designed for the virtual machine storage in large-scale cloud data center. Unlike traditional shared storage, HVSTO adopts a distributed structure to preserve privacy of virtual machines, which are a threat in traditional centralized structure. To improve the performance of I/O latency in this distributed structure, we use a hybrid system to combine solid state disk and distributed storage. From the evaluation of our demonstration system, HVSTO provides a scalable and sufficient throughput for the platform as a service infrastructure.Comment: 7 pages, 8 figures, in proceeding of The Second International Workshop on Security and Privacy in Big Data (BigSecurity 2014

    Distributed Interference-Aware Energy-Efficient Resource Allocation for Device-to-Device Communications Underlaying Cellular Networks

    Full text link
    The introduction of device-to-device (D2D) into cellular networks poses many new challenges in the resource allocation design due to the co-channel interference caused by spectrum reuse and limited battery life of user equipments (UEs). In this paper, we propose a distributed interference-aware energy-efficient resource allocation algorithm to maximize each UE's energy efficiency (EE) subject to its specific quality of service (QoS) and maximum transmission power constraints. We model the resource allocation problem as a noncooperative game, in which each player is self-interested and wants to maximize its own EE. The formulated EE maximization problem is a non-convex problem and is transformed into a convex optimization problem by exploiting the properties of the nonlinear fractional programming. An iterative optimization algorithm is proposed and verified through computer simulations.Comment: 6 pages, 3 figures, IEEE GLOBECOM 201

    Energy Efficiency and Spectral Efficiency Tradeoff in Device-to-Device (D2D) Communications

    Full text link
    In this letter, we investigate the tradeoff between energy efficiency (EE) and spectral efficiency (SE) in device-to-device (D2D) communications underlaying cellular networks with uplink channel reuse. The resource allocation problem is modeled as a noncooperative game, in which each user equipment (UE) is self-interested and wants to maximize its own EE. Given the SE requirement and maximum transmission power constraints, a distributed energy-efficient resource allocation algorithm is proposed by exploiting the properties of the nonlinear fractional programming. The relationships between the EE and SE tradeoff of the proposed algorithm and system parameters are analyzed and verified through computer simulations.Comment: 8 pages, 6 figures, long version paper of IEEE Wireless Communications Letters, accepted for publication. arXiv admin note: text overlap with arXiv:1405.196

    Deep Learning for Smart Industry:Efficient Manufacture Inspection Systemwith Fog Computing

    Get PDF
    With the rapid development of Internet of things devices and network infrastructure, there have been a lot of sensors adopted in the industrial productions, resulting in a large size of data. One of the most popular examples is the manufacture inspection, which is to detect the defects of the products. In order to implement a robust inspection system with higher accuracy, we propose a deep learning based classification model in this paper, which can find the possible defective products. As there may be many assembly lines in one factory, one huge problem in this scenario is how to process such big data in real time. Therefore, we design our system with the concept of fog computing. By offloading the computation burden from the central server to the fog nodes, the system obtains the ability to deal with extremely large data. There are two obvious advantages in our system. The first one is that we adapt the convolutional neural network model to the fog computing environment, which significantly improves its computing efficiency. The other one is that we work out an inspection model, which can simultaneously indicate the defect type and its degree. The experiments well prove that the proposed method is robust and efficient

    ECCN: Orchestration of Edge-Centric Computing and Content-Centric Networking in the 5G Radio Access Network

    Get PDF
    Edge-centric computing (ECC) and content- centric networking (CCN) will be the most important technologies in future 5G networks. However, due to different architectures and protocols, it is still a challenge to fuse ECC and CCN together and provide manageable and flexible services. In this article, we present ECCN, an orchestrating scheme that integrates ECC and CCN into a hierarchical structure with software defined networking (SDN). We introduce the SDN technology into the hierarchical structure to decouple data and control planes of ECC and CCN, and then design an SDN protocol to control the data forwarding. We also implement two demonstration applications in our testbed to evaluate the ECCN scheme. The experimental results from the testbed applications, and extensive simulations show ECCN outperforms original structures

    Energy Cooperation in Battery-Free Wireless Communications with Radio Frequency Energy Harvesting

    Get PDF
    Radio frequency (RF) energy harvesting techniques are becoming a potential method to power battery-free wireless networks. In RF energy harvesting communications, energy cooperation enables shaping and optimization of the energy arrivals at the energy-receiving node to improve the overall system performance. In this article, we propose an energy cooperation scheme that enables energy cooperation in battery-free wireless networks with RF harvesting. We first study the battery-free wireless network with RF energy harvesting and then state the problem that optimizing the system performance with limited harvesting energy through new energy cooperation protocol. Finally, from the extensive simulation results, our energy cooperation protocol performs better than the original battery-free wireless network solution

    Human-Like Driving: Empirical Decision-Making System for Autonomous Vehicles

    Get PDF
    The autonomous vehicle, as an emerging and rapidly growing field, has received extensive attention for its futuristic driving experiences. Although the fast developing depth sensors and machine learning methods have given a huge boost to self-driving research, existing autonomous driving vehicles do meet with several avoidable accidents during their road testings. The major cause is the misunderstanding between self-driving systems and human drivers. To solve this problem, we propose a humanlike driving system in this paper to give autonomous vehicles the ability to make decisions like a human. In our method, a convolutional neural network model is used to detect, recognize, and abstract the information in the input road scene, which is captured by the on-board sensors. And then a decision-making system calculates the specific commands to control the vehicles based on the abstractions. The biggest advantage of our work is that we implement a decision-making system which can well adapt to real-life road conditions, in which a massive number of human drivers exist. In addition, we build our perception system with only the depth information, rather than the unstable RGB data. The experimental results give a good demonstration of the efficiency and robustness of the proposed method
    • …
    corecore